& _ cscs
Centro Svizzero di Calcolo Scientifico ..
. Swiss National Supercomputing Centre m zuric h

<

7K) ' ' S
Enabling Continuous Testing of HPC Systems using ReFrame

Sixth Annual Workshop on HPC User Support Tools (HUST 2019)
SC19, Denver, CO, USA

© reframe@cscs.ch

Vasileios Karakasis, CSCS https://reframe-hpc.readthedocs.io
Brian Friesen, NERSC) nhttps//github.com/eth-cscs/reframe

Zhi-Qiang You, OSC
Heng Teu 4% https://reframe-slack.herokuapp.com

November 18, 2019

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

Why regression testing? @

= The HPC software stack is highly complex and very sensitive to changes.

= How can we ensure that the user experience is unaffected after an upgrade
or after an “innocent” change in the system configuration?

= How testing of such complex systems can be made sustainable?
- Consistency
- Maintainability
- Automation

@
<¥® cscs HUST 2019 - Denver, CO, USA | 2 ETHziirich

Background @

= (CSCS had a shell-script based regression testing suite

- Tests very tightly coupled to system details
- Lots of code replication across tests
- 15K lines of test code and low coverage

= Simple changes required significant team effort

= Fixing even simple bugs was a tedious task

<,
<e® CSCS HUST 2019 - Denver, CO, USA | 3 ETHziirich

What is ReFrame? _I

me to ReFrame —ReFre X+

R —— % incognite @ @
ReFrame v2.21-dev1

An HPC testing framework that..

Reframe
Docs » Welcome to ReFrame © View on GitHub

Next®

Geting Starte Welcome to ReFrame

= allows writing portable HPC
regression tests in Python, Aeamei e mevak i eresion st o HPG s he ot i

framework is to abstract the system, separating
the logic of a regression test from the low-level details, which pertain to the system
configuration and setup. This allows users to write easily portable regression tests, focusing

= abstracts away the system -

interaction det ai IS e e T e T D e e o]
’ — the test. The framework will load the test and will send it down a well-defined pipeline that

will take care of its execution. The stages of this pipeline take care of all the system

R e ftchng, complation,

R e T e

= lets users focus solely on the logic
of their test, e o e e b e

= provides a runtime for running
efficiently the regression tests.

Writing system regression tests in a high-level modern programming language, like Python,
poses a great advantage in organizing and maintaining the tests. Users can create their own
ile tests at the same time and they can

t &
also customize them in a simple and expressive way.

@
<e® CSCS HUST 2019 - Denver, CO, USA | 4 ETHziirich

Design Goals @

Productivity

Portability

Speed and Ease of Use

Robustness

@
<¥® cscs HUST 2019 - Denver, CO, USA | 5 ETHziirich

Key Features

3.9
R X4 CscCs

Support for cycling through programming environments and system partitions
Support for different WLMs, parallel job launchers and modules systems
Support for sanity and performance tests

Support for test factories

Support for container runtimes (new in v2.20)

Support for test dependencies (new in v2.21)

Concurrent execution of regression tests

Progress and result reports

Performance logging with support for Syslog and Graylog

Clean internal APIs that allow the easy extension of the framework’s functionality

HUST 2019 - Denver, CO, USA | 6

!

ETHziirich

I

ReFrame’s Architecture

@rfm.simple_test
reframe <options> -r class MyTest(rfm.RegressionTest):

ReFrame Frontend RegressionTest API

ReFrame Runtime

System abstractions Environment abstractions

WLMs Parallel Build syst Environment
launchers modules

o/s

<%
¥® CscCs HUST 2019 - Denver, CO, USA | 7 ETHziirich

How ReFrame Executes the Tests @

All tests go through a well-defined pipeline.

The regression test pipeline

T
¥® CscCs HUST 2019 - Denver, CO, USA | 8 ETHziirich

How ReFrame Executes the Tests Ei

All tests go through a well-defined pipeline.

The regression test pipeline

oo - DODOOE - D0

Serial execution policy

T
¥® CscCs HUST 2019 - Denver, CO, USA | 8 ETHziirich

How ReFrame Executes the Tests

All tests go through a well-defined pipeline.

m“

The regression test pipeline

Serial execution policy

CODEERECOD RECC

I

ﬂ
H

Asynchronous execution policy

o
\\).0 cscs HUST 2019 - Denver, CO, USA | 8

ETHziirich

Writing a Regression Test in ReFrame

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example3Test(rfm.RegressionTest):
def __init__ (self):
self.descr = 'Matrix-vector multiplicationgexample with MPI+OpenMP'
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu', 'PrgEnv-intel'
self.sourcepath = 'example matrix vector multiplication mpi_openmp.c'
self.build_system = 'SingleSource'
self.executable opts = ['1024', '10']
self.prgenv_flags = {'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu’' : ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp'1}

'PrgEnv-pgi’']

self.sanity patterns = sn.assert_found(r'time for,single matrix vector multiplication', self.stdout)

self.num tasks = 8

self.num tasks_per_node = 2

self.num cpus_per_task = 4

self.variables = {'OMP_NUM THREADS': str(self.num cpus_per_task)}
self.tags = {'tutorial'}

@rfm.run_before('compile')
def setflags(self):

self.build_system.cflags = self.prgenv_flags[self.current_environ.name]

39
<@, Cscs HUST 2019 - Denver, CO, USA | 9

ETHziirich

Writing a Performance Test in ReFrame Hi

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_ test
class Example7Test(rfm.RegressionTest):
def _ init_ (self):
self.descr = 'Matrix-vectorgmultiplication, (CUDA_ performance, test)'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example matrix vector multiplication_ cuda.cu'
self.build_system = 'SingleSource'’
self.build_system.cxxflags = ['-03']
self.executable_opts = ['4096', '1000']
self.modules = ['cudatoolkit']
self.sanity patterns = sn.assert_found(r'time for single matrix, vector multiplication', self.stdout)
——self.perf_patterns = {
'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+) Gflop/s', self.stdout, 'Gflops', float)

——self.reference = {
'daint:gpu': {
'perf': (50.0, -0.1, 0.1, 'Gflop/s'),
}

self.tags = {'tutorial'}

39
<e® CSCS HUST 2019 - Denver, CO, USA | 10 ETHziirich

Running ReFrame Hi

Sample output with the asynchronous execution policy

Running 1 check(s)
Started on Sat Nov 16 20:33:11 2019

[-————————-] started processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[RUN] Example7Test on daint:gpu using PrgEnv-cray
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[RUN] Example7Test on daint:gpu using PrgEnv-pgi

finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[-—————————] waiting for spawned checks to finish

[OK] Example7Test on daint:gpu using PrgEnv-cray
[OK] Example7Test on daint:gpu using PrgEnv-gnu

[OK] Example7Test on daint:gpu using PrgEnv-pgi

[-————————=] all spawned checks have finished

Ran 3 test case(s) from 1 check(s) (0 failure(s))
Finished on Sat Nov 16 20:33:25 2019

@
<e® CSCS HUST 2019 - Denver, CO, USA | 1 ETHziirich

Running ReFrame Hi

Sample failure

Running 1 check(s)
Started on Fri Jun 7 17:50:58 2019

[-—=——————] started processing Example7Test (Matrix-vector multiplication using CUDA)
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[FAIL] Example7Test on daint:gpu using PrgEnv-gnu
finished processing Example7Test (Matrix-vector multiplication using CUDA)

[FAILED] Ran 1 test case(s) from 1 check(s) (1 failure(s))
=: Finished on Fri Jun 7 17:51:07 2019

[== =

SUMMARY OF FAILURES

FAILURE INFO for Example7Test

System partition: daint:gpu

Environment: PrgEnv-gnu

Stage directory: /path/to/stage/daint/gpu/PrgEnv-gnu/Example7Test

Job type: batch job (i1d=823427)

Maintainers: ['you-can-type-your-email-here']

Failing phase: performance

Reason: performance error: failed to meet reference: perf=50.358136, expected 70.0 (1=63.0, u=77.0)

* ok ok kb % ok

@
<e® CSCS HUST 2019 - Denver, CO, USA | 12 ETHziirich

ReFrame @ CSCS @

Tests and production setup
Several test categories identified by tags:

= Cray PE tests: only PE functionality
= Production tests: entire HPC software stack

Elastic = Maintenance tests: selection of tests for
jliest S running before/after maintenance sessions
repository

ReFrame

repository

= Benchmarks

\puH u” j = 534 tests in total (most of them available on
\ p AERIDER > A Graylog ReFrame’s Github repo)

Scheduled ‘09'”

dail
i Jenkins et PizKesch mg ReFrame

l

Notify roster on failure

T
Pg® Cscs HUST 2019 - Denver, CO, USA | 13 ETHziirich

ReFrame @ CSCS @

Tests and production setup
Several test categories identified by tags:

= Cray PE tests: only PE functionality
= Production tests: entire HPC software stack

Elastic = Maintenance tests: selection of tests for
ReFrame Test S running before/after maintenance sessions

repository repository

= Benchmarks

\puu u” j [= 534 tests in total (most of them available on
\ p AERIDER | R Grawog ReFrame’s Github repo)

Scheduled \ogm

dally R i I Experiences from Piz Daint’s upgrade to CLE7:

= Enabling ReFrame as early as possible on the
l TDS has streamlined the upgrade process.

= Revealed several regressions in the
programming environment that needed to
be fixed.

= Builds confidence when finally everything is
GREEN.

Notify roster on failure

T
Pg® Cscs HUST 2019 - Denver, CO, USA | 13 ETHziirich

Conclusions @

ReFrame is a powerful tool that allows you to continuously test an HPC
environment without having to deal with the low-level system interaction details.
= High-level tests written in Python
= Portability across HPC system platforms
= Comprehensive reports and reproducible methods
= Easy integration in CI/CD workflows

Bug reports, feature requests, help @ https://github.com/eth-cscs/reframe

o,
<e® CSCS HUST 2019 - Denver, CO, USA | 14 ETHziirich

https://github.com/eth-cscs/reframe

— A $50%. U.S. DEPARTMENT OF
| BERKELEY LAB ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

ReFrame at NERSC

Brian Friesen, Helen He, Lisa Gerhardt, Brandon Cook,
Christopher Samuel

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

HUST’19
2019 Nov 18

System regression testing use cases at NERSC

e ‘Hotfixes’ applied to eLogins are often lost during reboots until the fix is
IS applied to node image
e Run as part of development work on Test & Dev System (TDS) during
pre-maintenance stabilisation period to catch issues before deployment.
e System software changes/upgrades can be disruptive to large
experiments and user facilities that use NERSC (DESI, ATLAS, LZ, ...)
o can take weeks to reconfigure pipelines to address changes in
system software locations, version changes, ABIl changes
o Experiments are contributing their own tests to NERSC’s ReFrame
test battery to accelerate system verification for their own software
e Ongoing system performance monitoring

Integration with NERSC center-wide monitoring

« NERSC has consolidated system and facility monitoring data into a central Elasticsearch
database

+ Integrated with Kibana and Grafana interfaces to create real-time web-based data
dashboards, alerts

« Cray XC system monitoring data sent to Elasticsearch via Cray Lightweight Log
Management (LLM) service
 LLM listens on a syslog port
» Collects data from hardware counters on compute nodes, cabinet temperature,
power usage, etc., and now ReFrame performance test data too
« NERSC uses ReFrame’s syslog logging interface to plug directly into LLM on Cori, such
that all ReFrame performance tests are immediately logged in Elasticsearch
« Data available on Kibana dashboard in real time

[) % RG - Reframe Benchmarks Dail X -+

S cC @ © | @ https://kb.nersc.gov/app/kibana#/visualize/edit/a5801d60-d93d-1169-a40d-40a6142cafa?_g=(refreshinterval:(pause:itvalue:0) time: (from:'2019-09-03T14:25:13.375Z! mode:absolute,t0:'2019-1 2%)| - Oy S n#Eo=el=
September 3rd
- / RG - Reframe 2019,
‘ kl bana . . . C 07:25:13.375to
Visualize Benchmarks Save Share Inspect Refresh Documentation Auto- < >
— October 26th
Discover Daily 2019,
06:39:21.783
Visualize
Time Series Metric Top N Gauge Markdown Table
Dashboard
2.5
Timelion > AllocSpeedTest_no 0.055
2 SEEE e aieinrs hpgmg_small 1911 @A M AllocSpeedTest_2... 0.053
Canvas October 18th 2019, 00:00:00.000
15 v | graph500_... 443,976,992
@ Maps : | ® hpgmg_small 1.911
hpcg
& Infrastructure 0.5 i i i — B miniFE_small 25,646.567
0 graph500 0
E Logs 2019-09-08 2019-09-16 2019-09-23 2019-10-01 2019-10-08 2019-10-16 2019-10-24 B
per 24 hours AMG_small 83,627,912
W Uptime
a Auto apply The changes will be automatically applied.
q:P Dev Tools
| W Sy N al oindl o o A in ndndl i

A
il

rrrrrrrl

BERKELEY LAB

Test examples on Cori

Functionality Performance

e Data\Warp stage in/out e NERSC-8 procurement

e Shifter (pull/execute) benchmarks

e Jupyter e |OR

e [DL, Matlab e HPGMG, Graph500, HPCG
e TensorFlow/PyTorch e NESAP apps

e Dynamic RDMA credentials e (several others)

e hugepage allocation

e HPSS

e (many others)

Automated Testing

e f After a software build completes, module is
installed and committed to repository

7. E-mail test
results to node

developer, 4. Parses commits

e tacts « Repository is configured with a webhook
that triggers appropriate tests on commit

6. Store output

Developers 5. Return
Notified results of tests

queue on HPC
system with

Cormpute * ReFrame is used to build testing system
= for software environment

Filesystem

“A Continuous Integration-Based Framework for Software Management” PEARC* 19

1

 ReFrame tests are performed by a user-privilege account

$ run-osc_regression.sh fftw3 3.3.8

Command line: /usr/local/reframe/2.17/reframe.py -C /path/to/reframe/settings.py -c

/path/to/reframe/checks/ -R --max-retries 1 --exec-policy=async --save-log-files
--nocolor -t fftw3$ -t apps -t version|module|test|perf -M fftw3:
fftw3/3.3.8 -r

Application Status

M module-files

Application Status
£ Overview
Application Version Dependencies Status
® Repository R 3.5.0 compiler intel 18.0.3
Files
R 3.5.2 compiler intel 18.0.3 7
Commits
Bianchos ansys 19.2 core
Tags arm-ddt 19.01 core v 4
Contributors =
arm-map 19.0.1 core vV
Graph
arm-pr 19.0.1 core N7
Compare g
Charts boost 1.67.0 mpi mvapich2 2.3 intel 18.0.3 v/
) Issues 0 cuda 10.0.130 core
i1 Merge Requests 0 darshan 3.1.2 mpi mvapich2 2.2 intel 16.0.8
Cl/CcD darshan 31.2 mpi openmpi 1.10-hpcx intel 16.0.8
O wiki darshan 3.1.2 mpi openmpi 1.10.7 intel 16.0.8 x
& Snippets . . . -
darshan 314 mpi mvapich2 2.2 intel 16.0.8

<« Collapse sidebar darshan 315 mpi mvapich2 2.2 intel 16.0.8 4

« Sanity check after system maintenance or updates to system
software stack

$ run_reframe.sh -pid -t apps -r |& tee 20191008 downtime_gpfs.log
$ report_test.py 20191008 downtime gpfs.log

Start Date: Tue Oct 8 17:42:27 2019
End Date: Tue Oct 8 18:04:47 2019
Number of Checks: 254

ReFrame Test Summary

Total number of tests is 590
Total number of failures is 127

Comment

Can not load module or other unexpected errors

Sanity check failed; please rerun the tests:

Sanity check failed; please rerun the tests:
performance Performance check failed; please rerun the tests:

Performance Monitoring

[SciApps] Node Performance

HPCG Performance Reference: 34.9 GFLOP/s (Pitzer), 19.5 GFLOP/s (Owens)
Data Time Range System Node History Top # Nodes
Last 6 months v pitzer (34.9) v p0039 v X 25
HPCG - pitzer
p0223 34223742
p0198

p0174
p0039
p0159
p0098
p0085S
p0125
p0044
p0207
p0069
+ PO196
:5, p0052
e p0063
p0184
p0152
p0054
p0004
p0169
p0057
p0053
p0010
p0118
p0147
p0087

o
]
=]
o
N
=]
N
]
w
=]
w
o

GFLOP/s

36.310994

- sum_hpcg

Submit test once per month

Record results in syslog
format

Upload to splunk, display in
dashboard

Can see performance
variance in time and across
nodes, similar to XDMoD
capability

< & cscs
Centro Svizzero di Calcolo Scientif ..
. Swril:suNa‘if)zl:};lasuns:c?l:nuﬁ:;%u?m ETHziirich

e =9
raw.input(Hello /\n)H ~o
=ra mdafrg._réao?ﬁimr(q ,:0)

Thank you for your attention

© reframe@cscs.ch

https://reframe-hpc.readthedocs.io
) httpsi//github.com/eth-cscs/reframe
4 https://reframe-slack herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

