
Enabling Continuous Testing of HPC Systems using ReFrame
Sixth Annual Workshop on HPC User Support Tools (HUST 2019)
SC’19, Denver, CO, USA

Vasileios Karakasis, CSCS
Brian Friesen, NERSC
Zhi-Qiang You, OSC

November 18, 2019

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

Why regression testing?

◾ The HPC software stack is highly complex and very sensitive to changes.
◾ How can we ensure that the user experience is unaffected after an upgrade
or after an “innocent” change in the system configuration?

◾ How testing of such complex systems can be made sustainable?
– Consistency
– Maintainability
– Automation

HUST 2019 – Denver, CO, USA ∣ 2

Background

◾ CSCS had a shell-script based regression testing suite
– Tests very tightly coupled to system details
– Lots of code replication across tests
– 15K lines of test code and low coverage

◾ Simple changes required significant team effort

◾ Fixing even simple bugs was a tedious task

HUST 2019 – Denver, CO, USA ∣ 3

What is ReFrame?

An HPC testing framework that…

◾ allows writing portable HPC
regression tests in Python,
◾ abstracts away the system
interaction details,
◾ lets users focus solely on the logic
of their test,
◾ provides a runtime for running
efficiently the regression tests.

HUST 2019 – Denver, CO, USA ∣ 4

Design Goals

◾ Productivity
◾ Portability
◾ Speed and Ease of Use
◾ Robustness

HUST 2019 – Denver, CO, USA ∣ 5

Key Features

◾ Support for cycling through programming environments and system partitions

◾ Support for different WLMs, parallel job launchers and modules systems

◾ Support for sanity and performance tests

◾ Support for test factories

◾ Support for container runtimes (new in v2.20)

◾ Support for test dependencies (new in v2.21)

◾ Concurrent execution of regression tests

◾ Progress and result reports

◾ Performance logging with support for Syslog and Graylog

◾ Clean internal APIs that allow the easy extension of the framework’s functionality

HUST 2019 – Denver, CO, USA ∣ 6

ReFrame’s Architecture

RegressionTest	API

System	abstractions Environment	abstractions

WLMs Parallel
launchers Build	systems Environment

modules

O/S

ReFrame	Runtime

ReFrame	Frontend

@rfm.simple_test
class	MyTest(rfm.RegressionTest):reframe	<options>	-r

HUST 2019 – Denver, CO, USA ∣ 7

How ReFrame Executes the Tests

All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

Serial execution policy

Asynchronous execution policy

HUST 2019 – Denver, CO, USA ∣ 8

How ReFrame Executes the Tests

All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

Asynchronous execution policy

HUST 2019 – Denver, CO, USA ∣ 8

How ReFrame Executes the Tests

All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

HUST 2019 – Denver, CO, USA ∣ 8

Writing a Regression Test in ReFrame
import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example3Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vectorɚmultiplicationɚexampleɚwithɚMPI+OpenMP'
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu', 'PrgEnv-intel', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_mpi_openmp.c'
self.build_system = 'SingleSource'
self.executable_opts = ['1024', '10']
self.prgenv_flags = {'PrgEnv-cray': ['-homp'],

'PrgEnv-gnu': ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp']}

self.sanity_patterns = sn.assert_found(r'timeɚforɚsingleɚmatrixɚvectorɚmultiplication', self.stdout)
self.num_tasks = 8
self.num_tasks_per_node = 2
self.num_cpus_per_task = 4
self.variables = {'OMP_NUM_THREADS': str(self.num_cpus_per_task)}
self.tags = {'tutorial'}

@rfm.run_before('compile')
def setflags(self):

self.build_system.cflags = self.prgenv_flags[self.current_environ.name]

HUST 2019 – Denver, CO, USA ∣ 9

Writing a Performance Test in ReFrame

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example7Test(rfm.RegressionTest):

def __init__(self):
self.descr = 'Matrix-vectorɚmultiplicationɚ(CUDAɚperformanceɚtest)'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example_matrix_vector_multiplication_cuda.cu'
self.build_system = 'SingleSource'
self.build_system.cxxflags = ['-O3']
self.executable_opts = ['4096', '1000']
self.modules = ['cudatoolkit']
self.sanity_patterns = sn.assert_found(r'timeɚforɚsingleɚmatrixɚvectorɚmultiplication', self.stdout)!→self.perf_patterns = {

'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+)ɚGflop/s', self.stdout, 'Gflops', float)
}!→self.reference = {

'daint:gpu': {
'perf': (50.0, -0.1, 0.1, 'Gflop/s'),

}
}
self.tags = {'tutorial'}

HUST 2019 – Denver, CO, USA ∣ 10

Running ReFrame
Sample output with the asynchronous execution policy

[==========] Running 1 check(s)
[==========] Started on Sat Nov 16 20:33:11 2019

[----------] started processing Example7Test (Matrix-vector multiplication (CUDA performance test))
[RUN] Example7Test on daint:gpu using PrgEnv-cray
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[RUN] Example7Test on daint:gpu using PrgEnv-pgi
[----------] finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[----------] waiting for spawned checks to finish
[OK] Example7Test on daint:gpu using PrgEnv-cray
[OK] Example7Test on daint:gpu using PrgEnv-gnu
[OK] Example7Test on daint:gpu using PrgEnv-pgi
[----------] all spawned checks have finished

[PASSED] Ran 3 test case(s) from 1 check(s) (0 failure(s))
[==========] Finished on Sat Nov 16 20:33:25 2019

HUST 2019 – Denver, CO, USA ∣ 11

Running ReFrame
Sample failure

[==========] Running 1 check(s)
[==========] Started on Fri Jun 7 17:50:58 2019

[----------] started processing Example7Test (Matrix-vector multiplication using CUDA)
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[FAIL] Example7Test on daint:gpu using PrgEnv-gnu
[----------] finished processing Example7Test (Matrix-vector multiplication using CUDA)

[FAILED] Ran 1 test case(s) from 1 check(s) (1 failure(s))
[==========] Finished on Fri Jun 7 17:51:07 2019

==
SUMMARY OF FAILURES
--
FAILURE INFO for Example7Test

* System partition: daint:gpu
* Environment: PrgEnv-gnu
* Stage directory: /path/to/stage/daint/gpu/PrgEnv-gnu/Example7Test
* Job type: batch job (id=823427)
* Maintainers: ['you-can-type-your-email-here']
* Failing phase: performance
* Reason: performance error: failed to meet reference: perf=50.358136, expected 70.0 (l=63.0, u=77.0)

--

HUST 2019 – Denver, CO, USA ∣ 12

ReFrame @ CSCS
Tests and production setup

ReFrame
repository

Jenkins

Test
repository

pull pull
login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for

running before/after maintenance sessions
◾ Benchmarks
◾ 534 tests in total (most of them available on

ReFrame’s Github repo)

Experiences from Piz Daint’s upgrade to CLE7:
◾ Enabling ReFrame as early as possible on the

TDS has streamlined the upgrade process.
◾ Revealed several regressions in the

programming environment that needed to
be fixed.

◾ Builds confidence when finally everything is
GREEN.

HUST 2019 – Denver, CO, USA ∣ 13

ReFrame @ CSCS
Tests and production setup

ReFrame
repository

Jenkins

Test
repository

pull pull
login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for

running before/after maintenance sessions
◾ Benchmarks
◾ 534 tests in total (most of them available on

ReFrame’s Github repo)

Experiences from Piz Daint’s upgrade to CLE7:
◾ Enabling ReFrame as early as possible on the

TDS has streamlined the upgrade process.
◾ Revealed several regressions in the

programming environment that needed to
be fixed.

◾ Builds confidence when finally everything is
GREEN.

HUST 2019 – Denver, CO, USA ∣ 13

Conclusions

ReFrame is a powerful tool that allows you to continuously test an HPC
environment without having to deal with the low-level system interaction details.

◾ High-level tests written in Python
◾ Portability across HPC system platforms
◾ Comprehensive reports and reproducible methods
◾ Easy integration in CI/CD workflows

Bug reports, feature requests, help @ https://github.com/eth-cscs/reframe

HUST 2019 – Denver, CO, USA ∣ 14

https://github.com/eth-cscs/reframe

ReFrame at NERSC
Brian Friesen, Helen He, Lisa Gerhardt, Brandon Cook,
Christopher Samuel

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

HUST’19
2019 Nov 18

System regression testing use cases at NERSC

● ‘Hotfixes’ applied to eLogins are often lost during reboots until the fix is
is applied to node image

● Run as part of development work on Test & Dev System (TDS) during
pre-maintenance stabilisation period to catch issues before deployment.

● System software changes/upgrades can be disruptive to large
experiments and user facilities that use NERSC (DESI, ATLAS, LZ, ...)
○ can take weeks to reconfigure pipelines to address changes in

system software locations, version changes, ABI changes
○ Experiments are contributing their own tests to NERSC’s ReFrame

test battery to accelerate system verification for their own software
● Ongoing system performance monitoring

2Footer

Integration with NERSC center-wide monitoring

• NERSC has consolidated system and facility monitoring data into a central Elasticsearch
database
• Integrated with Kibana and Grafana interfaces to create real-time web-based data

dashboards, alerts
• Cray XC system monitoring data sent to Elasticsearch via Cray Lightweight Log

Management (LLM) service
• LLM listens on a syslog port
• Collects data from hardware counters on compute nodes, cabinet temperature,

power usage, etc., and now ReFrame performance test data too
• NERSC uses ReFrame’s syslog logging interface to plug directly into LLM on Cori, such

that all ReFrame performance tests are immediately logged in Elasticsearch
• Data available on Kibana dashboard in real time

3Footer

4

Test examples on Cori

Functionality
● DataWarp stage in/out
● Shifter (pull/execute)
● Jupyter
● IDL, Matlab
● TensorFlow/PyTorch
● Dynamic RDMA credentials
● hugepage allocation
● HPSS
● (many others)

5Footer

Performance
● NERSC-8 procurement

benchmarks
● IOR
● HPGMG, Graph500, HPCG
● NESAP apps
● (several others)

Automated Testing

1

• After a software build completes, module is
installed and committed to repository

• Repository is configured with a webhook
that triggers appropriate tests on commit

• ReFrame is used to build testing system
for software environment

“A Continuous Integration-Based Framework for Software Management” PEARC‘ 19

Application Testing
• ReFrame tests are performed by a user-privilege account

2

$ run-osc_regression.sh fftw3 3.3.8 mpi mvapich2 2.3 intel 18.0.3

Command line: /usr/local/reframe/2.17/reframe.py -C /path/to/reframe/settings.py -c

/path/to/reframe/checks/ -R --max-retries 1 --exec-policy=async --save-log-files

--nocolor -t fftw3$ -t apps -t version|module|test|perf -p intel-mvapich2 -M fftw3:

intel/18.0.3 mvapich2/2.3 fftw3/3.3.8 -r

Application Status

3

System Regression Testing
• Sanity check after system maintenance or updates to system

software stack

4

$ run_reframe.sh -pid -t apps -r |& tee 20191008_downtime_gpfs.log
$ report_test.py 20191008_downtime_gpfs.log

Start Date: Tue Oct 8 17:42:27 2019
 End Date: Tue Oct 8 18:04:47 2019
Number of Checks: 254

ReFrame Test Summary

Total number of tests is 590
Total number of failures is 127

Phase # Comment
----------- ----- --
setup 110 Can not load module or other unexpected errors
sanity 4 Sanity check failed; please rerun the tests:
run 0 Sanity check failed; please rerun the tests:
performance 3 Performance check failed; please rerun the tests:
....

Performance Monitoring

5

• Submit test once per month

• Record results in syslog
format

• Upload to splunk, display in
dashboard

• Can see performance
variance in time and across
nodes, similar to XDMoD
capability

Thank you for your attention
reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

