
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Using	Malleable	Task	Scheduling	to	Accelerate	Package	
Manager	Installations	

Samuel	Knight*,	Jeremiah	Wilke*,	Todd	Gamblin+	
	
	

Unclassified	Unlimited	Release	(UUR)	
HUST-19,	Denver,	CO	
November	18,	2019		

*Scalable	Modeling	and	Analysis,	Sandia	National	Labs,	Livermore	CA	
+Lawrence	Livermore	National	Laboratory,	Livermore	CA	

SAND2019-14138C

Motivation	

•  Many system and scientific applications in require compilation from
source

•  Compilation of large software stacks can be time consuming, e.g.
building xSDK can take several hours to build

•  Parallel builds can reduce time, but often underutilize hardware
resources

2

Build	System	Scalability	

•  Build systems tend not to scale linearly as cores are added

•  Configure scripts (e.g. Autotools) build and execute many small
stub programs serially

3

Build	System	Scalability	

Scaling graph here

4

•  Makefiles execute a serial linking step after completing a batch
of object files

•  Makefiles execute on object files in parallel but sequentially

traverse the directory hierarchy, potentially starving itself of jobs
at the end of each step.

Spack	Manages	Installation	Dependency	Graphs	

•  Spack installs packages from source
code

•  Spack analyzes an input Spec and
traces the dependencies to create
a DAG (Directed Acyclic Graph)

•  Concretizer fills in variant, compiler
and architecture details not defined
by the spec

5

How	Spack	Installs	Packages	

•  Spack traces the DAG to find leaf
vertices (packages that have no
dependencies left to install)

•  Select a leaf, install, and repeat
until there are no dependencies left
in a ‘reverse order traversal’ of the graph

6

•  Each package executes a pipeline of phases

•  Phases will implicitly run on every core where possible to
exploit intra-task parallelism

How	Spack	Installs	Packages	

7

Packages	are	Malleable	Tasks	in	an	Installation	
Graph	

Makefile jobs are an example of malleable tasks

make	–j	1	Time	

Cores	

make	–j	4	

Cores	

•  Malleable task – Atomic unit of execution whose completion
time changes with the allotment of more resources.

8

Exploiting	Inter-Task	Parallelism	

Time	

Cores	 Cores	

VS

•  Task DAGs can schedule multiple tasks with a fraction of the
available cores or a single task with all cores

•  Since build systems do not tend to scale linearly, total
installation time can be improved by installing multiple
dependencies at the same time.

•  Experimental builds will show time improvements >2x

9

Concepts	used	in	Task	Scheduling	

•  Top Level – the longest path
from the current task to an
entrance task excluding the
task's execution time

•  Bottom Level - the longest path
by weight from a given task
to an exit task
including that task's execution time

•  Critical Path - the longest path from
the current task to an entrance task
excluding the task's execution time.
Calculated by adding b-level and t-level

10

Modeling	Malleable	Task	Execution	Time	

•  Ahmdal’s law describes an execution as having two parts, a
serial and parallelizable component. The serial component
results in an upper bound to task speedup

•  If we assume tser and t(1) to be task-intrinsic, the equation can
be reduced to

•  kA and kB are package-specific constants, determined by
measuring execution time with different numbers of cores and
fitting with polynomial approximation (least squares)

11

Two-Step	Scheduling	Algorithms	have	cost-
Benefit	Tradeoffs	

•  M-Task scheduling algorithms are specialized DAG schedulers

•  The presented algorithms are “Two-step” schedulers. The
first step changes the core allotment, and the second creates a
schedule

•  CPR (Critical Path Reduction) a greedy algorithm that
generally creates good results [1]

•  MCPA (Modified Critical Path and Allocation) can yield results
similar to CPR at a lower time complexity [2]

•  MLS (M-Task List Scheduler) constitutes the second step for
both CPR and MCPA, and generates a schedule from a given
core allotment

12

[1] A. Radulescu, C. Nicolescu, A. J. C. van_Gemund and P. P. Jonker, "CPR: mixed task and data parallel scheduling for distributed systems,"

[2] Savina Bansal, Padam Kumar, Kuldip Singh, “An improved two-step algorithm for task and data parallel scheduling in distributed memory machines”

Cost-Benefit	Tradeoff	

13

GCC
T(6) = 2

BLAS
T(1) = 6

OpenMPI
T(5) = 3.2

Parmetis
T(3) = 2.5

HDF5
T(2) = 3

Trilinos
T(6) = 3.4

GCC
T(3) = 3

BLAS
T(1) = 6

OpenMPI
T(3) = 4

Parmetis
T(2) = 3.2

HDF5
T(2) = 3.2

Trilinos
T(3) = 4.7

CPR Schedule

 MCPA Schedule

time

cores

time

GCC
T(6) = 2

BLAS
T(6) = 2.7

OpenMPI
T(6) = 3

HDF5
T(6) = 2.3

Trilinos
T(6) = 3.4

Sequential Schedule

Par-
metis

T(6)=1.7

CPR	Algorithm	

•  Every task starts with one
core and an initial schedule
is created

•  Outer loop repeats until the
inner loop does not create a
better schedule

•  Inner loop repeats until it can
improve the schedule by adding
a core to a task on the critical
path or there are no more cores
to try

14

Scheduler	Tweaks	

•  Filtered CPR (F-CPR) will skip tasks
that do not meet a minimum speedup
threshold. Value used in experiments
was 20% improvement over 8 cores

•  Reuse MLS (R-MLS) leverages memoization
between calls from CPR to improve time
complexity

•  MLS hole filling. The MLS reference
inadvertently allows for hole formation,
which can be prevented by seeking for
processors with later idle times before
assigning start times to cores

15

Benchmark	Systems	

16

Benchmarked	Packages	

17

Schedule	Creation	Time	

•  MCPA had the fastest creation time by order of magnitude

•  F-CPR was usually able to create a schedule faster than
CPR

•  CPR’s slowest creation time was 2.49 seconds for a 72 package
DAG that installed in 71 minutes

18

Schedule	Creation	Time	

•  MCPA had the fastest creation time by order of magnitude

•  F-CPR was usually able to create a schedule faster than
CPR

•  CPR’s slowest creation time was 2.49 seconds for a 72 package
DAG that installed in 71 minutes

19

27.7x creation time 5.1x packages

*Not spaced
to scale

MLS	vs	R-MLS	Schedule	Creation	Time	

•  [F-]CPR schedules saw up to 42% creation time improvement

20

Schedule	Execution	time	

21

Schedule	Execution	time	

22

~55% decrease

Schedule	Execution	time	

23

MCPA has similar speedups
despite lower time complexity

Schedule	Execution	time	

24

Up to 10% drift from
estimated speedup

Schedule	Execution	time	

25

F-CPR instability

Schedule	Execution	time	

26

What about disk overhead?

Future	Work	

•  Multi-node MLS – MLS can be trivially changed to create
schedules for multiple nodes

•  Task execution time heuristic has a primitive implementation.
It is not portable across machines, and was not designed to
take into account package details like variants

•  Hyperthreading and overprovisioning may provide more time
reduction

•  Phase tasks instead of package
task DAGs

•  The scheduler has no model to
account for package fetching

M4

autoreconf

configure

build

install

autoreconf

configure

build

install

Package Task Phase Tasks

M4 autoreconf

M4 configure

M4 build

M4 install

27

Conclusion	

•  Software installation does not tend to utilize system resources
optimally

•  Package execution times can be modeled as malleable tasks
and organized with a DAG scheduler

•  In every tested case, the schedulers took an insignificant
amount of time to produce a greatly improved installation times
over a sequentially installed stack

•  Code:
https://github.com/sknigh/spack/tree/feature/parallelbuild4

28

Acknowledgments	
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

Table	of	Symbols	

30

Spack	Package	Composition	

31

M-Task	List	Scheduling	(MLS)	Algorithm	

•  Takes a list of tasks with cores
already allotted

•  Sorts the tasks by b-level (e.g.
how deep they are in the
dependency hierarchy)

•  “Assign” the task by adding its
execution time to the cores
with the earliest idle times

•  Assign the earliest idle time
to the task

32

MCPA	Algorithm	

•  MCPA finds a task that minimizes
‘Work Area’ gain along the critical
path

•  Will not allocate cores to tasks
when the total cores allocated the
the precedence level are equivalent
to the total cores

•  Stops when critical path work area
is greater than global average work
area

33

Algorithm	Descriptions	

34

