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Motivation	

•  Many system and scientific applications in require compilation from 
source 

•  Compilation of large software stacks can be time consuming, e.g. 
building xSDK can take several hours to build 

•  Parallel builds can reduce time, but often underutilize hardware 
resources 
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Build	System	Scalability	

•  Build systems tend not to scale linearly as cores are added 
 

•  Configure scripts (e.g. Autotools) build and execute many small 
stub programs serially 
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Build	System	Scalability	

Scaling graph here 
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•  Makefiles execute a serial linking step after completing a batch 
of object files 

 
•  Makefiles execute on object files in parallel but sequentially 

traverse the directory hierarchy, potentially starving itself of jobs
at the end of each step. 



  

Spack	Manages	Installation	Dependency	Graphs	

•  Spack installs packages from source 
code 

•  Spack analyzes an input Spec and 
traces the dependencies to create 
a DAG (Directed Acyclic Graph) 

•  Concretizer fills in variant, compiler 
and architecture details not defined 
by the spec 
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How	Spack	Installs	Packages	

•  Spack traces the DAG to find leaf 
vertices (packages that have no 
dependencies left to install) 

•  Select a leaf, install, and repeat 
until there are no dependencies left 
in a ‘reverse order traversal’ of the graph 
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•  Each package executes a pipeline of phases 

•  Phases will implicitly run on every core where possible to 
exploit intra-task parallelism 

How	Spack	Installs	Packages	
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Packages	are	Malleable	Tasks	in	an	Installation	
Graph	

Makefile jobs are an example of malleable tasks 

make	–j	1	Time	

Cores	

make	–j	4	

Cores	

•  Malleable task – Atomic unit of execution whose completion 
time changes with the allotment of more resources. 
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Exploiting	Inter-Task	Parallelism	

Time	

Cores	 Cores	

VS 

•  Task DAGs can schedule multiple tasks with a fraction of the 
available cores or a single task with all cores 

•  Since build systems do not tend to scale linearly, total 
installation time can be improved by installing multiple 
dependencies at the same time. 

•  Experimental builds will show time improvements >2x 
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Concepts	used	in	Task	Scheduling	

•  Top Level – the longest path 
from the current task to an  
entrance task excluding the  
task's execution time 
 

•  Bottom Level - the longest path  
by weight from a given task 
to an exit task 
including that task's execution time 
 

•  Critical Path - the longest path from 
the current task to an entrance task 
excluding the task's execution time. 
Calculated by adding b-level and t-level 
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Modeling	Malleable	Task	Execution	Time	

•  Ahmdal’s law describes an execution as having two parts, a 
serial and parallelizable component. The serial component 
results in an upper bound to task speedup 

•  If we assume tser and t(1) to be task-intrinsic, the equation can 
be reduced to 

•  kA and kB are package-specific constants, determined by 
measuring execution time with different numbers of cores and 
fitting with polynomial approximation (least squares) 
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Two-Step	Scheduling	Algorithms	have	cost-
Benefit	Tradeoffs	

•  M-Task scheduling algorithms are specialized DAG schedulers 

•  The presented algorithms are “Two-step” schedulers. The 
first step changes the core allotment, and the second creates a 
schedule 

•  CPR (Critical Path Reduction) a greedy algorithm that 
generally creates good results [1] 

•  MCPA (Modified Critical Path and Allocation) can yield results 
similar to CPR at a lower time complexity [2] 

•  MLS (M-Task List Scheduler) constitutes the second step for 
both CPR and MCPA, and generates a schedule from a given 
core allotment 
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[1] A. Radulescu, C. Nicolescu, A. J. C. van_Gemund and P. P. Jonker, "CPR: mixed task and data parallel scheduling for distributed systems," 

[2] Savina Bansal, Padam Kumar, Kuldip Singh, “An improved two-step algorithm for task and data parallel scheduling in distributed memory machines” 



  

Cost-Benefit	Tradeoff	
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CPR	Algorithm	

•  Every task starts with one 
core and an initial schedule 
is created 

•  Outer loop repeats until the 
inner loop does not create a 
better schedule 

•  Inner loop repeats until it can 
improve the schedule by adding 
a core to a task on the critical 
path or there are no more cores 
to try 
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Scheduler	Tweaks	

•  Filtered CPR (F-CPR) will skip tasks 
that do not meet a minimum speedup 
threshold. Value used in experiments 
was 20% improvement over 8 cores  

•  Reuse MLS (R-MLS) leverages memoization 
between calls from CPR to improve time 
complexity 

•  MLS hole filling. The MLS reference 
inadvertently allows for hole formation, 
which can be prevented by seeking for 
processors with later idle times before 
assigning start times to cores 
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Benchmark	Systems	
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Benchmarked	Packages	
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Schedule	Creation	Time	

•  MCPA had the fastest creation time by order of magnitude 

•  F-CPR was usually able to create a schedule faster than 
CPR 

•  CPR’s slowest creation time was 2.49 seconds for a 72 package 
DAG that installed in 71 minutes 
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Schedule	Creation	Time	

•  MCPA had the fastest creation time by order of magnitude 

•  F-CPR was usually able to create a schedule faster than 
CPR 

•  CPR’s slowest creation time was 2.49 seconds for a 72 package 
DAG that installed in 71 minutes 
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27.7x creation time 5.1x packages 

*Not spaced 
to scale 



  

MLS	vs	R-MLS	Schedule	Creation	Time	

•  [F-]CPR schedules saw up to 42% creation time improvement 
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Schedule	Execution	time	
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Schedule	Execution	time	
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~55% decrease 



  

Schedule	Execution	time	
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MCPA has similar speedups 
despite lower time complexity 



  

Schedule	Execution	time	
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Up to 10% drift from 
estimated speedup 



  

Schedule	Execution	time	
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F-CPR instability 



  

Schedule	Execution	time	

26 

What about disk overhead? 



  

Future	Work	

•  Multi-node MLS – MLS can be trivially changed to create 
schedules for multiple nodes 

•  Task execution time heuristic has a primitive implementation. 
It is not portable across machines, and was not designed to 
take into account package details like variants 

•  Hyperthreading and overprovisioning may provide more time 
reduction 

•  Phase tasks instead of package 
task DAGs 

•  The scheduler has no model to 
account for package fetching 

M4

autoreconf

configure

build

install

autoreconf

configure

build

install

Package Task Phase Tasks

M4 autoreconf

M4 configure

M4 build

M4 install
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Conclusion	

•  Software installation does not tend to utilize system resources 
optimally 

•  Package execution times can be modeled as malleable tasks 
and organized with a DAG scheduler 
 

•  In every tested case, the schedulers took an insignificant 
amount of time to produce a greatly improved installation times 
over a sequentially installed stack 

•  Code: 
https://github.com/sknigh/spack/tree/feature/parallelbuild4 
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Table	of	Symbols	
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Spack	Package	Composition	
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M-Task	List	Scheduling	(MLS)	Algorithm	

•  Takes a list of tasks with cores 
already allotted 

•  Sorts the tasks by b-level (e.g.  
how deep they are in the 
dependency hierarchy) 

•  “Assign” the task by adding its 
execution time to the cores 
with the earliest idle times 

•  Assign the earliest idle time 
to the task 
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MCPA	Algorithm	

•  MCPA finds a task that minimizes 
‘Work Area’ gain along the critical 
path 

•  Will not allocate cores to tasks 
when the total cores allocated the 
the precedence level are equivalent 
to the total cores 

•  Stops when critical path work area  
is greater than global average work 
area 
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Algorithm	Descriptions	
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