SAND2019-14138C

Sandia
Exceptional service in the national interest @ National

Laboratories

Using Malleable Task Scheduling to Accelerate Package
Manager Installations
Samuel Knight*, Jeremiah Wilke*, Todd Gamblin*

*Scalable Modeling and Analysis, Sandia National Labs, Livermore CA
*Lawrence Livermore National Laboratory, Livermore CA

Unclassified Unlimited Release (UUR)

HUST-19, Denver, CO
November 18, 2019

@ 5 EN ERGY W‘ d'é‘g Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
"~,, Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

1 1 ’11 ﬁg?igi:al)
M Ot I Va t I O n Laboratories

« Many system and scientific applications in require compilation from
source

« Compilation of large software stacks can be time consuming, e.g.
building xXSDK can take several hours to build

« Parallel builds can reduce time, but often underutilize hardware
resources

Histogram of Maximum Observed Make Job Speedup

Package Count
= N N
(6] o ul

=
o

921

0
123456 7 8 9101112131415161718192021
Build time Speed Up

Sandia
"1 National
Laboratories

Build System Scalability

» Build systems tend not to scale linearly as cores are added

« Configure scripts (e.g. Autotools) build and execute many small
stub programs serially

GNU GMP Speedup curve

12 A

10

Speedup

5 10 15 20 25 30
Make Jobs

Sandia
"1 National
Laboratories

Build System Scalability

« Makefiles execute a serial linking step after completing a batch
of object files

« Makefiles execute on object files in parallel but sequentially
traverse the directory hierarchy, potentially starving itself of jobs

at the end of each step.
GNU GMP Speedup curve

12 A

10

8

Speedup

5 10 15 20 25 30
Make Jobs

National

Spack Manages Installation Dependency Graphs (@)

« Spack installs packages from source

code

« Spack analyzes an input Spec and
traces the dependencies to create
a DAG (Directed Acyclic Graph)

« Concretizer fills in variant, compiler
and architecture details not defined
by the spec

$ spack graph \
> --deptype link,run openmpi
O openmpil

o hwloc

Libxml2

XZ

numactl

o Llibpciaccess

o Llibiconv

Sandia
"1 National
Laboratories

How Spack Installs Packages

« Spack traces the DAG to find leaf [rooteTagaeiict (1 srmociietl vort
vertices (packages that have no — Searching for binary cachc of hgcant.

. . => Wwarning: O Spack mirrors are currentlLy cCQ

dependenC|eS |eft tO |nSta”) => No binary for pkgconf found: installing f

=—> Fetching http://distfiles.dereferenced.org
R e s R R s
=> Staging archive: /tmp/root/spack-stage/spa

¢ ES(EIGE(:t a |€3€if, ir1€5t€3||, Eir](j rEBFDEBEQt => Created stage in /tmp/root/spack-stage/spa
until there are no dependencies left B diny Rocont oo

. => Executing phase: 'autoreconf'
in a ‘reverse order traversal’ of the graph S el e
Executing phase: 'build'
Executing phase: 'install'
Successfully installed pkgconf
Fetch: 0.02s. Build: 9.65s. Total: 9.68s.
[+] /opt/spack/opt/spack/linux-rhel8-skylake_d
$ spack spec perl@5.30.0~threads —> Installing [ncurses
Input spec —> Searching for binary cache of ncurses
=> Warning: No Spack mirrors are currently co
=> No binary for ncurses found: installing f
=> Fetching http://ftpmirror.gnu.org/ncurses
T R R R R R

Staging archive: /tmp/root/spack-stage/spa
+cpanm+shared~threads —> Created stage in /tmp/root/spack-stage/spg
No patches needed for ncurses
Areadline —> Building ncurses [AutotoolsPackage]
Ancurses ~symlinks~termlib —> Executing phase: 'autoreconf'
Apkgconf Executing phase: 'configure'

National

How Spack Installs Packages) .

« Each package executes a pipeline of phases

Building pkgconf [AutotoolsPackage]
Executing phase: 'autoreconf'
Executing phase: 'configure'
Executing phase: 'build'

Executing phase: 'install'
Successfully installed pkgconf
Fetch: 0.02s. Build: 9.65s. Total: 9.68s.
[+] /opt/spack/opt/spack/linux-rhel8-skylake_c

» Phases will implicitly run on every core where possible to
exploit intra-task parallelism

[root@750954cedéc4 .spack]# grep -- -j spack—build—out.txt
==> [2019-11-13-16:22:38.379062] 'make' '-16"
==> [2019-11-13-16:22:40.454473] 'make' '-716' 'install'

Packages are Malleable Tasks in an Installation g =,
Graph

Laboratories

« Malleable task — Atomic unit of execution whose completion

time changes with the allotment of more resources.

$ spack graph \
> --deptype link,run openmpi

A 0 openmpi
o hwloc
|
Time make -j 1 <|) libxm12
— make -j 4
)) XZ
Cores Cores numactl

o libpciaccess

Makefile jobs are an example of malleable tasks KRR

Exploiting Inter-Task Parallelism

« Task DAGs can schedule multiple tasks with a fraction of the
available cores or a single task with all cores

« Since build systems do not tend to scale linearly, total
installation time can be improved by installing multiple
dependencies at the same time.

« Experimental builds will show time improvements >2x

N

Time

e ———————— R—

Cores

VS

Cores

Sandia
National
Laboratories

Concepts used in Task Scheduling

Sandia
ﬂ" National

Laboratories

Top Level — the longest path r s
from the current task to an 5 6 “
entrance task excluding the - = =
task's execution time

Bottom Level - the longest path

by weight from a given task
to an exit task
including that task's execution time

Critical Path - the longest path from
the current task to an entrance task
excluding the task's execution time.

Calculated by adding b-level and t-level

hwloc

mwleawwmaiao\l

10

13

OpenMPI

1

bottom-level (tb)

Install Time (s)

top-level (tt)

crit. path | to + tt

1

12

13

10

National

Modeling Malleable Task Execution Time) .

Ahmdal’s law describes an execution as having two parts, a
serial and parallelizable component. The serial component
results in an upper bound to task speedup

t(p) — ((1 — tser)/p + tser)t(l)

If we assume f__, and t(1) to be task-intrinsic, the equation can
be reduced to

t(p) = ka/p + kg

k, and kg are package-specific constants, determined by
measuring execution time with different numbers of cores and
fitting with polynomial approximation (least squares)

11

Two-Step Scheduling Algorithms have cost-) e,
Benefit Tradeoffs

Laboratories
« M-Task scheduling algorithms are specialized DAG schedulers

« The presented algorithms are “Two-step” schedulers. The
first step changes the core allotment, and the second creates a
schedule

« CPR (Critical Path Reduction) a greedy algorithm that
generally creates good results [1]

« MCPA (Modified Critical Path and Allocation) can yield results
similar to CPR at a lower time complexity [2]

« MLS (M-Task List Scheduler) constitutes the second step for
both CPR and MCPA, and generates a schedule from a given
core allotment

[11 A. Radulescu, C. Nicolescu, A. J. C. van_Gemund and P. P. Jonker, "CPR: mixed task and data parallel scheduling for distributed systems,"

[2] Savina Bansal, Padam Kumar, Kuldip Singh, “An improved two-step algorithm for task and data parallel scheduling in distributed memory machines”

Cost-Benefit Tradeoff i) i

cores Sequential Schedule
T V Set of vertices
T o . E Set of edges
il GCC OpenMPI . BLAS HDF5 Trilinos
TO=2 | WO=3 [T, TO-27 T@=23 TE-34 P Set of processors
1 w Precedence levels
T time | | | | | | | | | | | | | |
I I I I I I I I I I I I I I
CPR Schedule
B BLAS
4 T(1)=6
1 Parmetis
| 10225 B iinos CPR (Critical Path Reduction) O(EV?P + V3P(logV + PlogP))
| B SOESE Greedy scheduler that iterates over many possible schedules
| 4
MCPA Schedule
T BLAS
4 L EX]
: Trilinos
T N oy o=t MCPA (Modified CPA) O(V(VW + E)P)
T o CPA with additional checks for task parallelism amongst independent tasks
HDF5
T T(2) = 3.2

CPR Algorithm rh)

» Every task starts with one
core and an initial schedule
IS created

« Quter loop repeats until the
iInner loop does not create a
better schedule

* Inner loop repeats until it can
improve the schedule by adding
a core to a task on the critical
path or there are no more cores
to try

procedure CPR(Proc count P, set<Task> tasks)
for all t; € tasks do
Pi < 1
end for
Schedule T « MLS()
repeat
X « set of tasks where p; < P
repeat
t «— t with max t.tjoe1 + t-Djevel
t.nproc «<— t.nproc +1
Schedule T” « MLS()
if Length(T”) < Length(T) then
T«T
else
t.nproc < t.nproc —1
Remove t from X
end if
until T is modified or X is empty
until T is unmodified
end procedure

14

Sandia
Scheduler Tweaks)t

+ Filtered CPR (F-CPR) will skip tasks
that do not meet a minimum speedup , _ {Scalable if tc(n)/te(1) < threshold,
threshold. Value used in experiments Unscalable otherwise
was 20% improvement over 8 cores

 Reuse MLS (R-MLS) leverages memoization
between calls from CPR to improve time
complexity
Partial Schedule

* MLS hole filling. The MLS reference ok Dependency
inadvertently allows for hole formation, Task to Schedule
which can be prevented by seeking for
processors with later idle times before
assigning start times to cores

Time —»
v

2 51 3 46 7 8
Sorted Core List

15

Benchmark Systems

Node A Node B
Hardware Cores 32 28
Memory 512 GB 256 GB
Build Mount SATA III SSD PCle NVMe
Install Mount SATA III SSD NFS
OS Mount SATA III SSD NFS

Sandia
National
Laboratories

16

National

Benchmarked Packages) .

Stack Packages Phases
Python 2.7.16 14 45
Tk 8.6.8 21 30
Rust 1.33.0 43 149
R 3.5.3 68 248

xSDK 0.4.0 72 222

National

Schedule Creation Time)

« MCPA had the fastest creation time by order of magnitude

 F-CPR was usually able to create a schedule faster than
CPR

« CPR’s slowest creation time was 2.49 seconds for a 72 package
DAG that installed in 71 minutes

Schedule Creation Time

B Filtered CPR
e CPR

1091 Stack Execution Time (s) CPR Creation Time (s)

2 Python 879.21 0.09
- Tk 385.46 0.13
% 10 Rust 4563.35 0.65
e R 1478.01 1.05

xSDK 4293.00 2.49

Python Tk Rust R xSDK
Stack

National

Schedule Creation Time)

« MCPA had the fastest creation time by order of magnitude

 F-CPR was usually able to create a schedule faster than
CPR

« CPR’s slowest creation time was 2.49 seconds for a 72 package
DAG that installed in 71 minutes

Schedule Creation Time

mmm Filtered CPR *Not spaced

= CPR to scale
mm MCPA

1.00 A

Stack Execution Time (s) CPR Creation Time (s)

2 Python 879.21 0.09
= Tk 385.46 0.13
R Rust 4563.35 0.65
5 019 R 1478.01 1.05

xSDK 4293.00 2.49

5.1x packages 27.7x creation time

Python Tk Rust R xSDK

19

Sandia
MLS vs R-MLS Schedule Creation Time)
» [F-]CPR schedules saw up to 42% creation time improvement

R-MLS vs MLS Schedule Creation Time

1.0

Schedule
I Filtered CPR
0.8 A p CPR R
(]
£
|_
C
ie)
5
]
Q
x
L
[Vp]
-
=
x

Python Tk Rust R xSDK

Normalized Makespan (lower is better)

Normalized Time (lower is better)

Schedule Execution time L

Node A: 32 Cores and SATA SSD

Est. Package Schedule Execution Time

Filtered CPR

CPR

MCPA

Sequential "make -j"

Python Tk Rust R xSDK

Normalized Makespan (lower is better)

Normalized Time (lower is better)

Node B: 28 Cores and Network Filesystem

Est. Package Schedule Execution Time

Sandia
National
Laboratories

Filtered CPR

CPR

MCPA

Sequential "make -j"

Python Tk Rust R xSDK

Normalized Makespan (lower is better)

Normalized Time (lower is better)

National

Schedule Execution time)

Node A: 32 Cores and SATA SSD

Est. Package Schedule Execution Time

Filtered CPR

CPR

MCPA

Sequential "make -j"

Python Tk Rust R xSDK

Normalized Makespan (lower is better)

Normalized Time (lower is better)

Node B: 28 Cores and Network Filesystem

Est. Package Schedule Execution Time

Filtered CPR

CPR

MCPA

Sequential "make -j"

Python Tk Rust R xSDK

Normalized Makespan (lower is better)

Normalized Time (lower is better)

Schedule Execution time

Node A: 32 Cores and SATA SSD

Est. Package Schedule Execution Time

QL

Node B: 28 Cores and Network Filesystem

Est. Package Schedule Execution Time

Filtered CPR

CPR

MCPA

Sequential "make -j"

Measured Package Schedule Execution Time

Sandia
National
Laboratories

Filtered CPR

CPR

MCPA

Sequential "make -j"

Normalized Makespan (lower is better)

Measured Package Schgdule Execution Time

Python Tk Rust R

0.0
xSDK Python Tk Rust R

xSDK

National

Schedule Execution time)

Node A: 32 Cores and SATA SSD Node B: 28 Cores and Network Filesystem
Est. Package Schedule Execution Time Est. Package Schedule Execution Time
1 | -, sl iAA—A e ri iAA A A ——-— e e i
T T
b=t £
[[
5 0.8 1 puumaERER - -f------- - - - P
@ @
2 2
[e] (e}
= 061 | e =
C C
[] (0]
E 0.4+ 3
el
g Filtered CPR 0 H Filtered CPR
% 02] == o Up to 10% drift from |, | ==
= MCPA . MCPA
s G B A estimated speedup o
0.0 - , - y

Measured Package pchedule Execution Time Measured Package Schedule Execution Time
1.0 f-----------ygae--------------gagg ===l - gy - oo ppgg e ooomomona- -

0.8 1
0.6 N
0.44

0.24

Normalized Time (lower is better)
Normalized Time (lower is better)

0.0
Python Tk Rust R xSDK Python Tk Rust R xSDK

National

Schedule Execution time)

Node A: 32 Cores and SATA SSD Node B: 28 Cores and Network Filesystem

Est. Package Schedule Execution Time Est. Package Schedule Execution Time

er is better)

Filtered CPR

CPR

MCPA

Sequential "make -j"

Filtered CPR

CPR

MCPA

Sequential "make -j"

Normalized Makespan (lower is better)

Normalized Make

Normalized Time (lower is better)
Normalized Time (lower is better)

0.0
Python Tk Rust R xSDK Python Tk Rust R xSDK

National

Schedule Execution time)

Node A: 32 Cores and SATA SSD Node B: 28 Cores and Network Filesystem
Est. Package Schedule Execution Time Est. Package Schedule Execution Time
)~ - 1 T I ;iL
5 T
g g
PR R T R R R 5089 - R -
) @
3 8
= 0.6 e = 0.6 - -
C C
© ©
Y 7y
g i
g 0.4 —
g Filtered CPR What about disk overhead?
go02q CPR - Tz
5 MCPA s mmm MCPA
= Sequential "make -j" = B Sequential "make -j"
0.0 - 0.0 4

Measured Package Schedule Execution Time Measured Package Schedule Execution Time

Normalized Time (lower is better)
Normalized Time (lower is better)

0.0
Python Tk Rust R xSDK Python Tk Rust R xSDK

Future Work

Multi-node MLS — MLS can be trivially changed to create

schedules for multiple nodes

Task execution time heuristic has a primitive implementation.
It is not portable across machines, and was not designed to
take into account package details like variants

Hyperthreading and overprovisioning may provide more time

reduction

Phase tasks instead of package
task DAGs

The scheduler has no model to
account for package fetching

Package Task

Phase Tasks

M4

autoreconf

M4 autoreconf

v

configure

M4 configure

v

build

M4 build

install

v

M4 install

Sandia
National
Laboratories

27

National

Sandia
CO n C I u S I O n ﬂl‘ Laboratories

Software installation does not tend to utilize system resources
optimally

Package execution times can be modeled as malleable tasks
and organized with a DAG scheduler

In every tested case, the schedulers took an insignificant

amount of time to produce a greatly improved installation times
over a sequentially installed stack

Code:
https://github.com/sknigh/spack/tree/feature/parallelbuild4

28

National

Sandia
Acknowledgments Lf

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

NS

National Nuclear Security Administration

Sandia
National
Laboratories

Table of Symbols

Symbol Definition

T Set of all tasks

ti ith task in set of all tasks

ti(pi) Execution time of ith task with p processors
Di No. processors allotted to ith task
Wi ith Task work area (t;(p) X p)

ts Start time of ith task

tr Finish time of ith task

tser Serial proportion of task execution
tsc Whether a task is scalable

tt Task top-level

tp Task bottom-level

%4 Set of vertices

E Set of edges

P Set of processors

w Precedence levels

Sandia
National
Laboratories

30

Spack Package Composition W=

Common Spack Package Types (N > 10)

Perl

Makefile

CMake

Custom

Python

R

Autotools

0 100 200 300 400 500 600 700
Packages

31

M-Task List Scheduling (MLS) Algorithm) .

TakeS a “St Of taSkS Wlth cores procedure MLS(Proc count P, set<Task> tasks, set<Core> cores)
already allotted tasks « sort tasks by b-level

for all ¢ € cores do
c.idle_time « 0

Sorts the tasks by b-level (e.g. end for

for all t € tasks do

hOW deep they are in the sortedCores « sorted cores by idle time
dependency hierarchy) selectedCores « sortedCores|0 : p(t)]
of fset « 0

t.start_time « latest selectedCores or dependency end

“Assign” the task by adding its time

t.end_time « t.start_time + t.exec_time

exeCUtion t|me to the cores while sortedCores[p(t)+ offset +1] < t.start_time do
with the earliest idle times offset —offset+1
end while

for i «—offset, p(t)+offset do
sortedCores|i| « t.end_time

Assign the earliest idle time end for
to the task end for

end procedure

32

MCPA Algorithm

MCPA finds a task that minimizes
‘Work Area’ gain along the critical
path

Will not allocate cores to tasks
when the total cores allocated the

the precedence level are equivalent

to the total cores

Stops when critical path work area
Is greater than global average work

darea

Sandia
’11 National

Laboratories

procedure MCPA(In: Proc count P, In-Out: set<Task> tasks)
for all t € tasks do
t.ncores =1
end for
computeT andBLevels(tasks)
while L;p, > A do
CP « set of tasks on current critical path
ValidT «— @
for all t € CP do
if cores available at t’s precedence level then
ValidT «t
end if
end for
topt < bestWorkArea(ValidT)
topt-ncores <— tops.ncores + 1
computeT andBLevels(tasks)
end while
end procedure
procedure BESTWORKAREA(set<Task> tasks)
topt < NULL
Gopt « inf
for all t; € tasks do find max work area gain G
G; — wi(ni) wi(ni+1)

n; n;+1
if G; > Gop: then
topt < ti
Gopt — G;j
end if
end for

end procedure

33

Algorithm Descriptions

Sandia
A Netional
Laboratories

Algorithm Complexity Description

CPR (Critical Path Reduction) O(EV?P + V3P(logV + PlogP)) Greedy scheduler that iterates over many possible schedules

F-CPR (Filtered CPR) O(EV?P + V3P(logV + PlogP)) CPR with minimum improvement threshold (“filter”) for pruning search space
CPA (Critical Path and Allocation) O(V(V + E)P) Allots cores on critical path until it reaches average processor area

MCPA (Modified CPA) O(V(VW + E)P) CPA with additional checks for task parallelism amongst independent tasks
MLS (M-task List Scheduling) O(E + Vlog(V) + VPlogP) Basic scheduling algorithm for assigning task start times.

R-MLS (Reuse MLS) O(E + VPlogP) MLS with memoization to reduce CPR’s time complexity

